1. Introduction

Advantage of Organic Device
- Flexible
- Light weight
- Low cost
- Low temperature process

Objective
The Realization of Pentacene-Based CMOS with N-Doped LaB₆ Interfacial Layer

Contents
- The effect of N-doped LaB₆ interfacial layer for Pentacene film
- N-type characteristics in the air

Organic CMOS: Generally 2 organic semiconductors

Conventional Organic Materials-Based CMOS

Single Organic Material-Based CMOS

2. Experimental Procedure

Evaporation Chamber for Pentacene

N-OFET with Ca Donor Layer

Low Work Function Materials

- Work function: 2.4 eV
- Good oxidation immunity by N doping of 6.6 at.

3. Effect of N-doped LaB₆ Interfacial Layer

Surface Morphology of Pentacene Film

AFM Image of Pentacene Film

XRD Pattern of Pentacene Film

- Grain size was dramatically increased on N-doped LaB₆.
- Grain size was increased with increasing temperature.
- Larger grain than 10 μm without lamellar grain at 100°C deposition

High quality Pentacene film can be formed on N-doped LaB₆

4. N-Type Characteristics of Pentacene-Based OFET

MOS Diode Characteristics

- Accumulation in positive bias was obtained.
- J-V characteristic also showed n-type characteristic.

Electron current was obtained in the air with light by using N-doped LaB₆ film

5. Conclusion

In this paper, N-doped LaB₆ with low work function of 2.4 eV and good oxidation immunity was investigated for Pentacene-based device. It was found as below.

- Deposition on N-doped LaB₆ at 100°C
 - Pentacene grain size: larger than 10 μm
 - The lamellar grain can be suppressed
- MOS diode with N-doped LaB₆ layer
 - C-V and J-V showed n-type.
- OFET with N-doped LaB₆ interfacial layer
 - Electron current was observed in the air.
 - It is still necessary to be assisted by light exposure.
 - The extracted electron mobility was 6.5x10⁻⁷ cm²/(Vs).

For the future step, the effect of N-doped LaB₆ interfacial layer in p-type Pentacene-based OFET and the passivation layer for Pentacene film in n-type OFET will be investigated. In addition, Pentacene-based CMOS with N-doped LaB₆ interfacial layer will be fabricated.

Acknowledgement

The authors thank Prof. Emeritus H. Ishiwaru, Prof. H. Funakubo, and Mr. M. Suzuki of Tokyo Institute of Technology, and Dr. Y. Fujisaki of Hitachi, Ltd. for useful discussion for this research. The N-doped LaB₆ film depositions were carried out at fluctuation free facility of New Industry Creation Hatchery Center, Tohoku University. This research was partially supported by Asahi Glass Foundation and JSPS KAKENHI Grant Number 15K13697.