

1. Introduction

1T-FeRAM with Orthorhombic HfO₂

Issue for Hf-based Ferroelectrics on Si Substrate

Dopant	t _{ox} (nm)	T _{anneal} (°C)	Substrate	Ref.
Zr	30	950	SiO ₂ /Si(100)	[2,3]
Si	9	1050	Si(100)	[4]
Si	10	1000	Si(100)	[5]
Y	N/A	700	YSZ/Si(100)	[6]

t_{ox}: Thickness of HfO₂ T_{anneal}: annealing temperature

Interfacial layer formed by high temperature annealing

Advantages of HfO₂ Scalability Compatibility with Si

			[1]
Phase	a (Å)	b (Å)	c (Å)
Monoclinic (M)	5.09	5.16	5.26
Orthorhombic (O)	4.90	5.11	4.92

[1] Q. Zeng, et al., Acta Crystallogr. C, 70(2), 76-84 (2014).

2. Objective

- Si substrate orientation dependence on the formation of undoped HfO₂ with metastable orthorhombic phase
- \succ Direct deposition of ferroelectric HfO₂ on Si substrates with relatively low annealing temperature.

3. Experimental Procedure

Cleaning p-Si(100), p-Si(111) p-Si(100), (111) SPM / DHF

 \rightarrow Formation of depolarization field

Direct deposition on Si substrates with low temperature annealing

process is necessary to suppress interfacial layer formation

[2] C. H. Cheng, et al., IEEE Electron Dev. Lett., 35, 138-140 (2014). [3] Y. C. Chiu, et al., Phys. Status Solidi RRL, 11, 1600368 (2017). [4] J. Muller, et al., 2012 VLSIT (2012). [5] T. S. Boscke, et al., IEDM11-550 (2011). [6] K. Lee, et al., Appl. Phys. Lett. 112, 202901 (2018).

5. Electrical Characteristics

- \succ MW of 0.61 V and 0.67 V was obtained on p-Si(100) and p-Si(111) substrate.
- diode on Si(111) showed larger memory window than Si(100)

6

 \mathbf{x}

Tokyo Tech

TiN

Si

10 nm

HfSiO

SiO₂

[5]

The authors would like to thank Prof. H. Funakubo, Mr. H. Inoue of Tokyo Institute of